Dynamic Industrial CYberrisk Modelling based on Evidence (DICYME)

Alberto Fernández-Isabel, Isaac Martín de Diego, Emilio L. Cano, Rubén R. Fernández, Javier García-Ochoa, Romy R. Ravines, Ovidio López, Jaume Puigbó

Rey Juan Carlos University & DeNexus Inc.

Jornadas Nacionales de Investigación en Ciberseguridad, 4 June 2025

• Javier Sánchez García-Ochoa

- Researcher at DSLAB group, Rey Juan Carlos University (URJC), Spain. www.datasciencelab.es
- javier.garciaochoa@urjc.es

• Public-Private Collaboration (CPP) project

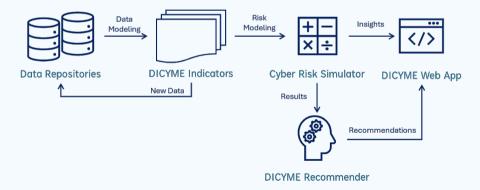
- URJC & DeNexus Inc.
- Spanish Ministry of Science, Innovation and Universities (MICIU) under the **CPP2021-009025** call.

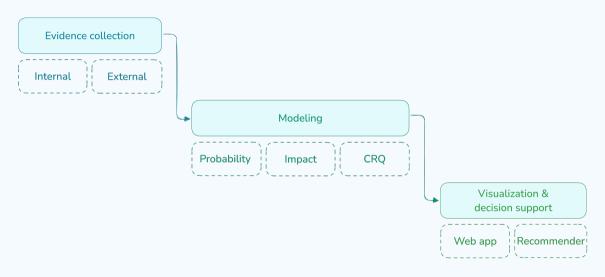
Introduction and context

- **2** System workflow
- **③** Innovations and key contributions

- **4** Visualization & decision support
- **(5)** Conclusions & future work
- **6** Questions & acknowledgements

• OT systems are vulnerable to cyberattacks.

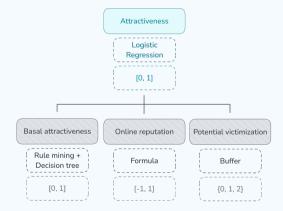

- Current cybersecurity frameworks (e.g., NIST CSF, NIST SP 800-82, ISO 27019) do not fully address industrial needs.
- DeRISKTM translates OT cyber risk exposures and vulnerabilities into business metrics.
- DICYME proposes a new approach for cyber risk quantification (CRQ).


2. System workflow

- \bullet Evidence collection \rightarrow Modeling \rightarrow Visualization and decision support.
- Uses real and synthetic entities.
- Empowered by LLMs to translate data into actionable knowledge.

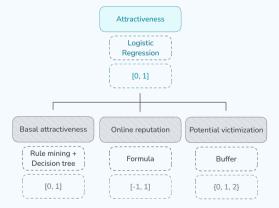
- **Cyber incidents:** multi-source incident data using NLP to remove duplicates and structure information.
- Victim profile: entity-level dataset with financials, reputation, and exposure signals for risk modeling (firmographics).
- **IDS telemetry:** anonymized sample of internal security data capturing vulnerabilities, assets, and threat activity.

- **Cyber incidents:** multi-source incident data using NLP to remove duplicates and structure information.
- Victim profile: entity-level dataset with financials, reputation, and exposure signals for risk modeling (firmographics).
- **IDS telemetry:** anonymized sample of internal security data capturing vulnerabilities, assets, and threat activity.

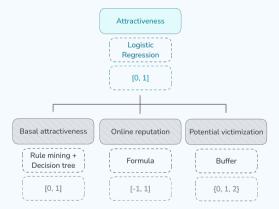

- **Cyber incidents:** multi-source incident data using NLP to remove duplicates and structure information.
- Victim profile: entity-level dataset with financials, reputation, and exposure signals for risk modeling (firmographics).
- **IDS telemetry:** anonymized sample of internal security data capturing vulnerabilities, assets, and threat activity.

כבכב יוור בבכב יווי

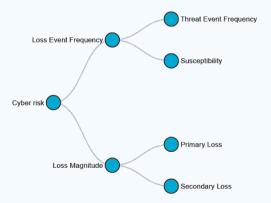
• Attractiveness: likelihood of being targeted.

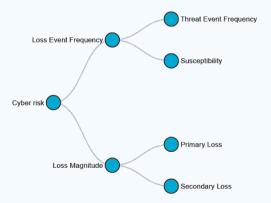

• THRACT: threat actor profiling over time.

 CVE2TTs: CVE to MITRE ATT&CK mapping.

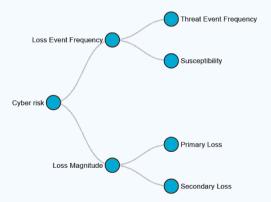


- Attractiveness: likelihood of being targeted.
- THRACT: threat actor profiling over time.
- CVE2TTs: CVE to MITRE ATT&CK mapping.

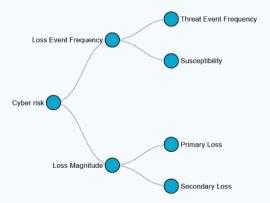

- Attractiveness: likelihood of being targeted.
- THRACT: threat actor profiling over time.
- CVE2TTs: CVE to MITRE ATT&CK mapping.


• Based on FAIR taxonomy.

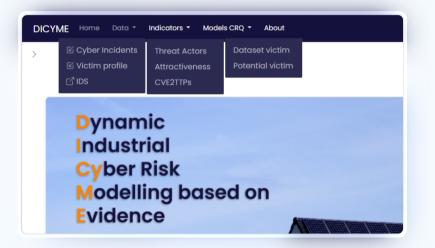
- Combines: frequency × magnitude.
- Uses data and indicators, as well as some inputs.
- Uses Monte Carlo simulations and probabilistic distributions.

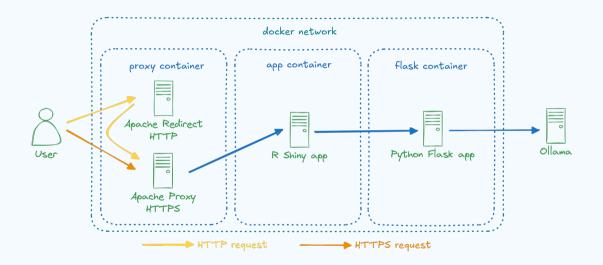


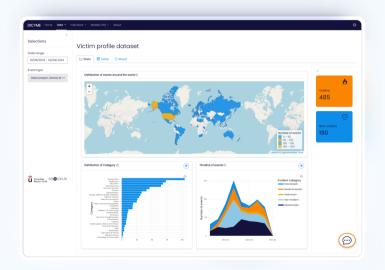
- Based on FAIR taxonomy.
- \bullet Combines: frequency \times magnitude.
- Uses data and indicators, as well as some inputs.
- Uses Monte Carlo simulations and probabilistic distributions.

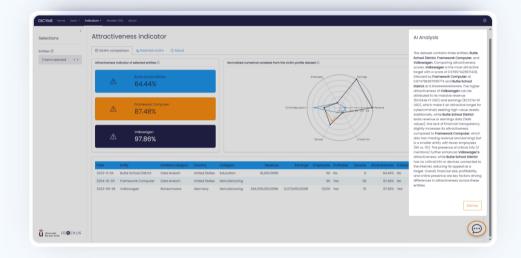


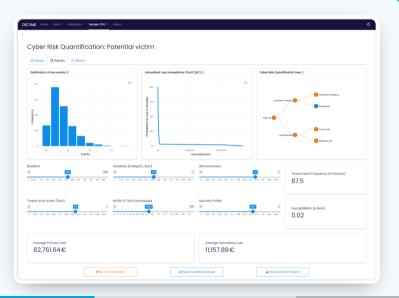
- Based on FAIR taxonomy.
- Combines: frequency \times magnitude.
- Uses data and indicators, as well as some inputs.
- Uses Monte Carlo simulations and probabilistic distributions.




- Based on FAIR taxonomy.
- Combines: frequency \times magnitude.
- Uses data and indicators, as well as some inputs.
- Uses Monte Carlo simulations and probabilistic distributions.







Cyber Risk Quantificatior	n: Potential victim			
🗟 Inputs 😟 Results 🕧 About				
Victim attributes		Vulnerability selection		
Country * Industry category *		Upload your CVEs * 🕐		
United States × • Business Services × •		Browse valid_cve_list_dotcoma.csv		
			Upload complete	
Revenue ①	Earnings ①	ID	Description	÷
4.560,220 C	5,902,103 €	1 CVE-2005-0392	ppxp does not drop root privileg	es before opening log files, whi
		2 CVE-2008-0772	SQL injection vulnerability in ind	ex.php in the com_doc compo
		3 CVE-2010-0192	Unspecified vulnerability in Ado	e Reader and Acrobat 9.x bef
Employees ①	Publicly traded Profitable	4 CVE-2015-4146	The EAP-pwd peer implementation in hostapd and wpa_suppl	
2,890		5 CVE-2017-5539	The patch for directory traversal (CVE-2017-5480) in b2evoluti	
		6 CVE-2017-2837	An exploitable denial of service vulnerability exists within the h_	
Online Reputation ① Publicly visible devices ① Critical Info leaks ①		7 CVE-2024-0019	In setListening of AppOpsControllerImpl.java, there is a possibl	
0.60 590	0	8 CVE-2008-1662	Unspecified vulnerability in the HP System Administration Man	
		9 CVE-2013-0167	VDSM in Red Hat Enterprise Virtualization 3 and 3.2 allows privil	
Simulation parameters		Insurance parameters		
Number of simulations ①	Seed ①	Cost of 1h Forensics ①	Cost of Equipment ①	Value of Statistical Life ①
1,000	123	400€	100.000€	3.000.000 €

- **Curated datasets:** Aggregated from public, private and telemetry sources to ensure coverage and reliability.
- **Novel indicators:** Metrics such as *Attractiveness*, *THRACT* and *CVE2TTs* provide actionable, data-driven insights.
- **CRQ integration:** Quantification models aligned with FAIR are embedded into a modular platform.
- Support for insurers: The system enables more informed underwriting and risk pricing decisions.
- Explainable AI: LLM-powered modules enhance transparency for non-expert users.

- **Curated datasets:** Aggregated from public, private and telemetry sources to ensure coverage and reliability.
- **Novel indicators:** Metrics such as *Attractiveness*, *THRACT* and *CVE2TTs* provide actionable, data-driven insights.
- **CRQ integration:** Quantification models aligned with FAIR are embedded into a modular platform.
- **Support for insurers:** The system enables more informed underwriting and risk pricing decisions.
- Explainable AI: LLM-powered modules enhance transparency for non-expert users.

- **Curated datasets:** Aggregated from public, private and telemetry sources to ensure coverage and reliability.
- **Novel indicators:** Metrics such as *Attractiveness*, *THRACT* and *CVE2TTs* provide actionable, data-driven insights.
- **CRQ integration:** Quantification models aligned with FAIR are embedded into a modular platform.
- **Support for insurers:** The system enables more informed underwriting and risk pricing decisions.
- Explainable AI: LLM-powered modules enhance transparency for non-expert users.

- **Curated datasets:** Aggregated from public, private and telemetry sources to ensure coverage and reliability.
- **Novel indicators:** Metrics such as *Attractiveness*, *THRACT* and *CVE2TTs* provide actionable, data-driven insights.
- **CRQ integration:** Quantification models aligned with FAIR are embedded into a modular platform.
- **Support for insurers:** The system enables more informed underwriting and risk pricing decisions.
- Explainable AI: LLM-powered modules enhance transparency for non-expert users.

- **Curated datasets:** Aggregated from public, private and telemetry sources to ensure coverage and reliability.
- **Novel indicators:** Metrics such as *Attractiveness*, *THRACT* and *CVE2TTs* provide actionable, data-driven insights.
- **CRQ integration:** Quantification models aligned with FAIR are embedded into a modular platform.
- **Support for insurers:** The system enables more informed underwriting and risk pricing decisions.
- Explainable AI: LLM-powered modules enhance transparency for non-expert users.

• CRQ simulation refinement: Improve accuracy of probabilistic models.

- Recommender system: Suggest optimal mitigation actions based on cost-effectiveness and risk impact.
- Al for data processing: Use machine learning models to improve data collection, multi-source merging, and missing value imputation.
- Web platform rollout: Public demo version with real-time interactions and downloadable reports.
- Academic dissemination: Ongoing publications and use in educational cybersecurity programs.
- Commercial integration: Modules will be integrated into DeRiskTM.

- CRQ simulation refinement: Improve accuracy of probabilistic models.
- **Recommender system:** Suggest optimal mitigation actions based on cost-effectiveness and risk impact.
- Al for data processing: Use machine learning models to improve data collection, multi-source merging, and missing value imputation.
- Web platform rollout: Public demo version with real-time interactions and downloadable reports.
- Academic dissemination: Ongoing publications and use in educational cybersecurity programs.
- Commercial integration: Modules will be integrated into DeRiskTM.

- CRQ simulation refinement: Improve accuracy of probabilistic models.
- **Recommender system:** Suggest optimal mitigation actions based on cost-effectiveness and risk impact.
- Al for data processing: Use machine learning models to improve data collection, multi-source merging, and missing value imputation.
- Web platform rollout: Public demo version with real-time interactions and downloadable reports.
- Academic dissemination: Ongoing publications and use in educational cybersecurity programs.
- Commercial integration: Modules will be integrated into DeRiskTM.

- CRQ simulation refinement: Improve accuracy of probabilistic models.
- **Recommender system:** Suggest optimal mitigation actions based on cost-effectiveness and risk impact.
- Al for data processing: Use machine learning models to improve data collection, multi-source merging, and missing value imputation.
- Web platform rollout: Public demo version with real-time interactions and downloadable reports.
- Academic dissemination: Ongoing publications and use in educational cybersecurity programs.
- Commercial integration: Modules will be integrated into DeRiskTM.

- CRQ simulation refinement: Improve accuracy of probabilistic models.
- **Recommender system:** Suggest optimal mitigation actions based on cost-effectiveness and risk impact.
- Al for data processing: Use machine learning models to improve data collection, multi-source merging, and missing value imputation.
- Web platform rollout: Public demo version with real-time interactions and downloadable reports.
- Academic dissemination: Ongoing publications and use in educational cybersecurity programs.
- Commercial integration: Modules will be integrated into DeRiskTM.

- CRQ simulation refinement: Improve accuracy of probabilistic models.
- **Recommender system:** Suggest optimal mitigation actions based on cost-effectiveness and risk impact.
- Al for data processing: Use machine learning models to improve data collection, multi-source merging, and missing value imputation.
- Web platform rollout: Public demo version with real-time interactions and downloadable reports.
- Academic dissemination: Ongoing publications and use in educational cybersecurity programs.
- **Commercial integration:** Modules will be integrated into DeRiskTM.

Thank you! Any questions?

➡ javier.garciaochoa@urjc.es

